International Science Index


10007540

Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys

Abstract:

By using a combination of new technologies together with an unconventional use of different types of materials, specific mechanical properties and structures of the material can be achieved. Some possibilities are enabled by a combination of powder metallurgy in the preparation of a metal matrix with dispersed stable particles achieved by mechanical alloying and hot consolidation. This paper explains the thermomechanical properties of new generation of Oxide Dispersion Strengthened alloys (ODS) within three ranges of temperature with specified deformation profiles. The results show that the mechanical properties of new ODS alloys are significantly affected by the thermomechanical treatment.

References:
[1] Inco Alloys Limitted, Material data sheet, INCOLOY, alloy MA 956, INCOLOY, alloy MA 957, Hereford, U.K.
[2] W. Quadakkers, Oxidation of ODS alloys. Journal de Physique IV, 03 (1993) C9, 177- 186.
[3] F. D. Fischer, J. Svoboda, P. Fratzl, A thermodynamic approach to grain growth and coarsening, Journal of Philosophical Magazine, 83 (2003) 9, 1075–1093.
[4] F. Pedraza, Low Energy-High Flux Nitridation of Metal Alloys: Mechanisms, Microstructures and High Temperatures Oxidation Behaviour, Materials and technology, 42 (2008) 4, 157-169M. Young, the Techincal Writers Handbook. Mill Valley, CA: University Science, 1989.
[5] O. Khalaj, B. Mašek, H. Jirkova, A. Ronesova, J. Svoboda, Investigation on New Creep and Oxidation Resistant Materials, Materials and technology, 49 (2015) 4, 173-179.
[6] M. J. Alinger, G. R. Odette, D. T. Hoelzer, On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys, Acta Material, 57 (2009) 2, 392–406.
[7] P. Unifantowicz, Z. Oksiuta, P. Olier, Y. de Carlan, N. Baluc, Microstructure and mechanical properties of an ODS RAF steel fabricated by hot extrusion or hot isostatic pressing, Fusion Engineering and Design, 86 (2011), 2413–2416.
[8] M.A. Auger, V. de Castro, T. Leguey, A. Muñoz, R. Pareja, Microstructure and mechanical behavior of ODS and non-ODS Fe-14Cr model alloys produced by spark plasma sintering, Journal of Nuclear Materials, 436 (2013) 5, 68-75.
[9] M. Kos, J. Ferces, M. Brnucko, R. Rudolf, I. Anzel, pressing of Partially Oxide-Dispersion-Strenghtened Copper using the ECAP Process, Materials and technology, 48 (2014) 3, 379-384.
[10] B. Mašek, O. Khalaj, Z. Nový, T. Kubina, H. Jirkova, J. Svoboda, C. Štádler, Behaviour of New ODS Alloys under Single and Multiple Deformation, Materials and technology, 50 (2016) 6, 891-898.
[11] Marmy, P., Kruml, T., Low cycle fatigue of Eurofer 97, Journal of Nuclear Materials, 377 (2008) 1, 52–58.
[12] M. Misovic, N. Tadic, M. Jacimovic, M. Janjic, Deformations and Velocities during the Cold Rolling of Aluminium Alloys, Materials and technology, 50 (2016) 1, 59-67.
[13] A. Grajcar, Microstructure Evolution of Advanced High-Strength Trip-Aided Bainitic Steel, Materials and technology, 49 (2015) 5, 715-720.
[14] B. Sustarvic, I. Paulin, M. Godec, S. Glodez, M. Sori, J. Flasker, A. Korosec, S. Kores, G. Abramovic, DSC/TG of Al-based Alloyed Powders for P/M Applications, Materials and technology, 48 (2014) 4, 439-450.
[15] F. Tehovnik, J. Burja, B. Podgornik, M. Godec, F. Vode, Microstructural Evolution of Inconel 625 during hot Rolling, Materials and technology, 49 (2015) 5, 899-904.